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ABSTRACT

Oocyte quality is known to be a major cause of infertility in
repeat-breeder (RB) and heat-stressed dairy cows. However, the
mechanisms by which RB oocytes become less capable of
supporting embryo development remain largely unknown. Thus,
the aim of this study was to investigate whether the decreased
oocyte competence of RB cows (RBs) during summer is
associated with an altered gene expression profile and a
decrease in mitochondrial DNA (mtDNA) copy number.
Therefore, oocytes collected from heifers, non-RBs in peak
lactation (PLs), and RBs were used to evaluate mtDNA amounts
as well as the expression levels of genes associated with the
mitochondria (MT-CO1, NRF1, POLG, POLG2, PPARGCIA, and
TFAM), apoptosis (BAX, BCL2, and ITM2B), and oocyte
maturation (BMP15, FGF8, FGF10, FGF16, FGF17, and GDF9).
The oocytes retrieved from RBs during winter contained over
eight times more mtDNA than those retrieved from RBs during
summer. They also contained significantly less mtDNA than
oocytes retrieved from heifers and PLs during summer.
Moreover, the expression of mitochondria- (NRF1, POIG,
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POLG2, PPARGC1A, and TFAM) and apoptosis-related (BAX
and ITM2B) genes, as well as of GDF9, in RB oocytes collected
during summer was significantly greater than that in oocytes
collected from heifers and PLs during the same season. In
oocytes from heifers and PLs, the expression levels of these genes
were lower in those collected during summer compared with
winter, but this difference was not observed in oocytes collected
from RBs. Altogether, these data provide evidence of altered
gene expression and reduced mtDNA copy number in the
oocytes collected from RBs during summer. This indicates a loss
of fertility in RBs during summer, which might be caused by a
possible mitochondrial dysfunction associated with a greater
chance of oocytes to undergo apoptosis.

apoptosis, dairy cow, heat stress, mitochondria, oocyte quality,
repeat breeding, reproductive efficiency

INTRODUCTION

Repeat breeding is a major problem in the dairy industry,
with an incidence ranging from 9% to 24% of lactating animals
[1-4]. Repeat-breeder (RB) cows are described as subfertile
animals without any anatomical or infectious abnormalities that
do not become pregnant until after the third or later breeding
attempt, or that remain infertile after numerous services [2, 4,
5]. Although a multitude of factors may be involved in repeat
breeding [4, 6, 7], several studies have suggested that oocyte
quality plays a major role in its occurrence [8—15]. For
instance, we have recently reported that oocytes from RB cows
(RBs) exhibit a low capacity to develop into viable blastocysts
in vitro [12]. Bage et al. [11] have also reported that oocytes
from RB heifers are of poor quality, as judged by their
morphology and cytoplasmic maturation profiles. These
findings are in agreement with other reports that repeat
breeding is characterized by low fertilization rates [8] and
early embryonic loss [6, 9, 10], but that RBs experience similar
rates of gestational loss compared to non-RBs [15]. Moreover,
the transfer of embryos from non-RBs into RB surrogates has
been shown to result in conception rates that are comparable to
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those for non-RB surrogates, indicating that the lower
conception rates of RBs are determined by the quality of the
embryo and not by the uterine environment [15]. In summary,
despite the significant economic losses caused by repeat
breeding [2], little is known about the underlying molecular
mechanisms by which oocyte competence is compromised in
RBs.

Heat stress is another important factor that causes large
reductions in fertility in lactating dairy cows [16, 17]. The
extent of this problem is increasing, because intense genetic
selection for high milk production is associated with decreased
thermoregulatory competence [16, 17]. Follicular oocyte
development represents one of the most critical periods of
the reproductive cycle that is affected by heat stress, which
alters patterns of follicular development [18], steroid produc-
tion [19, 20], and gene expression [21, 22]. As a consequence,
oocytes harvested from Holstein cows exposed to heat stress
show reduced competence in developing into blastocysts in
vitro [12, 16, 22-25]. Moreover, the effect of heat stress on
oocyte competence may persist for long periods, even after the
heat stress has ended [19, 26]. The effect of heat stress on
fertility is even greater in RBs, resulting in very low blastocyst
development and conception rates [12, 15]. This observation
suggests that the reduced oocyte quality observed in RBs is
exacerbated by heat stress, further highlighting the need for
studies of the mechanisms by which oocyte competence is
compromised in RBs.

The microenvironment of the preovulatory follicle is so
critical for the developmental competence of oocytes that any
perturbation during this period may affect subsequent devel-
opment [27-29]. Transcription and regulation of mRNA
stability are among the key events that occur during this
period; these events play critical roles in establishing the
molecular program for early embryogenesis [28—30]. There is
evidence that exposure of the ovarian pool of oocytes to
environmental stress disturbs oocyte/embryo gene expression,
which, in turn, impairs development [22, 25]. The extensive
mitochondrial replication that results in hundreds of thousands
of mitochondria in fully grown oocytes is another important
event that affects preovulatory follicles [31, 32]. The number of
mitochondrial DNA (mtDNA) copies per oocyte has been
associated with oocyte competence in mice [33], pigs [34, 35],
humans [36-38], and cattle [39—42]. Therefore, any insult that
disturbs mitochondrial replication during folliculogenesis
might impair oocyte competence by rendering the organelle
dysfunctional. Because oocyte quality represents an important
factor in repeat breeding [8—15], evaluating gene expression
patterns and mtDNA copy numbers in oocytes from RBs might
increase the understanding of the molecular mechanisms that
are involved in this syndrome.

The aim of this study was to address the hypothesis that the
decreased oocyte competence that is observed in RB Holstein
cows during summer is associated with altered gene expression
profiles and decreased mtDNA copy numbers in oocytes.
Hence, oocytes were collected from heifers, non-RBs in peak
lactation (PL), and RBs [12]. Mitochondrial DNA copy
number and the expression levels of genes associated with
the mitochondria (MT-CO1, NRF1, POLG, POLG2, PPARG-
CIA, and TFAM), apoptosis (BAX, BCL2, and ITM2B), and
oocyte maturation (BMP15, FGFS8, FGF10, FGF16, FGF17,
and GDF9) were then evaluated in these oocytes.

MATERIALS AND METHODS

All of the chemicals and reagents were purchased from Sigma-Aldrich
Chemical Co. (St. Louis, MO) unless otherwise stated.

Ethics Statement

This study was approved by the Bioethics Commission of the Faculdade de
Medicina Veterindria e Zootecnia of the Universidade de Sao Paulo (protocol
number 1571/2008), which complies with ethical principles for animal
research. The cattle were provided by local commercial farms, as described
below, with the consent of their owners. We acknowledge the farms Santa
Rita—Agrindus S/A (Descalvado, SP, Brazil) and Sao Jorge (Sao Pedro, SP,
Brazil) for supplying the animals and for the management required to conduct
this study.

Experimental Design and Sample Collection

All analyses were conducted as described in a previous study [12]. In brief,
Holstein (Bos taurus) cattle of three different categories were analyzed: heifers,
PL, and RBs. The heifers were on average 16.8 = 0.3 mo old, were cycling,
and had never been inseminated. The RB group was composed of normal-
cycling, lactating cows that had been inseminated several times (ranging from 4
to 13 services) without becoming pregnant and that had no anatomical or
infectious abnormalities. The PL group consisted of normal-cycling cows,
averaging 110.4 = 3.8 days in milk, which had been inseminated less than
three times (non-RBs). More information regarding the characteristics of the
animals is provided in Supplemental Table S1 (Supplemental Data are available
online at www.biolreprod.org). Follicular wave emergence was synchronized
using a standard protocol [12] before the females were subjected to ovum pick
up (OPU). Four OPU sessions, two during winter (heifers, n =34; PL, n = 32;
and RB, n=31) and two during summer (heifers, n=36; PL, n=37; and RB, n
= 36), were conducted for each of the three categories of animals. However,
each animal was subjected to only one OPU session. Retrospective analysis
was conducted to choose the coolest and warmest periods of the year at the
farms where the experiments were conducted [12]. Cumulus-oocyte complexes
(COCs) that were recovered during the OPU sessions were morphologically
classified as viable or unviable based on the cytoplasmic characteristics of the
oocyte and on the number of cumulus cell layers [12]. Approximately 10% of
the viable COCs were used for molecular analyses, whereas the remaining 90%
were used for in vitro embryo production; the results of the in vitro embryo
production experiments have been published previously [12]. The oocytes that
were used for molecular analyses were mechanically separated from cumulus
cells by vortexing (3 min at maximum speed) and were then thoroughly washed
in PBS with 0.1% polyvinyl-pyrrolidone (PVP) three times to completely
remove the cumulus cells. Every oocyte was closely checked for the presence
of somatic cells under a stereomicroscope. Moreover, in a pilot experiment,
denuded oocytes were tested for the absence of contaminating cumulus cells to
validate our protocol [43]. The oocytes were stored individually at —80°C in 0.2
ml polystyrene PCR tubes with 1 pul PBS with 0.1% PVP and 1 U/ul RNase
inhibitor (RNase OUT; Invitrogen, Carlsbad, CA).

Quantification of mtDNA and mRNA

Isolation of genomic DNA and total RNA. Both genomic DNA and total
RNA were extracted from each individual oocyte using TRIzol reagent
(Invitrogen), as previously described [39, 43]. The extracted RNA was directly
dissolved in 10 pl DNase I solution (Invitrogen) plus 1 U/ul RNase OUT for
DNA degradation, as suggested by the manufacturer. The concentration of
RNA was not measured or normalized before reverse transcription. The total
content of RNA from an oocyte was immediately reverse transcribed into
cDNA using a High-Capacity ¢cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA) according to the manufacturer’s protocol. The
c¢DNA was then stored at —20°C until use. The extracted DNA was dissolved in
20 pl of 8 mM sodium hydroxide as suggested by the manufacturer [39]. To
adjust the pH, 1.72 ul of 0.1 M Hepes was added, and then 3.3 pl of ultrapure
H,0 was added to a final volume of 25 pl. The samples were immediately used
for quantitative PCR to avoid DNA degradation [39].

Relative quantification of mtDNA. The relative quantification of mtDNA
was performed as described previously [39]. In brief, fragments of mtDNA and
of the external standard were added to samples that were amplified by real-time
PCR before TRIzol extraction. The amount of mtDNA in each sample was
calculated relative to the external standard using the standard curve method
[44].

Quantification of mRNA. The expression of 15 genes was evaluated in
single oocytes that were collected from animals in each of the different
categories during winter and summer (Supplemental Table S2). These genes
were selected due to their roles in important events that occur during
folliculogenesis and early development. The chosen genes were grouped into
three categories: genes related to mitochondria (MT-COI, NRFI, POLG,
POLG2, PPARGCI1A, and TFAM), genes related to apoptosis (BAX, BCL2, and
ITM2B), and genes related to oocyte maturation (BMP15, FGFS, FGF10,
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FGF16, FGFI17, and GDF9). We analyzed these target genes without
normalization to internal controls, because we used single oocytes and because
the expression of candidate reference genes was highly variable during heat
stress [22, 43]. The stability of 10 candidate reference genes (ACTH, GAPDH,
GUSB, HISTIH2AG, HPRTI, PPIA, RPL15, SDHA, TBP, and YWHAZ) was
previously studied in oocytes collected from heifers, PL, and RBs during winter
and summer, but an optimal number of reference genes could not be determined
using the geNorm application, demonstrating their high degree of variability
[43]. According to this result, nine reference genes would be needed to
calculate a normalization factor for bovine oocytes exposed to seasonal
variation, which would be impractical and expensive to apply to several
experimental conditions. Thus, the normalization factor was calculated using
the geometric average of the three housekeeping genes (RPLI5, PPIA, and
GUSB) that were considered to be the most stable [43], as previously suggested
[45]. Normalization of the target genes using these criteria is presented as
supplementary material (Supplemental Figs. S1-S3). Gene-specific mRNA
transcripts were quantified by real-time RT-PCR using TagMan assays, as
described previously [43]. Briefly, primers and TagMan probes were designed
based on sequences available in GenBank (Supplemental Table S2) using
Primer Express software v. 3.1 (Applied Biosystems). Whenever possible,
primers or probes were designed to anneal to exon-exon junctions, avoiding
genomic DNA amplification. The primers and probes were purchased from
Applied Biosystems or Sigma-Aldrich, as indicated in Supplemental Table S2.
Before performing real-time RT-PCR, ¢cDNA was preamplified using a
TagMan PreAmp Master Mix Kit (Applied Biosystems), as previously
described [43]. The linearity of amplification of each of the transcripts was
determined as suggested by the manufacturer [43]. Real-time RT-PCR was
performed in 15-pl reactions containing 1X TagMan assay (consisting of 900
nM of primers and 250 nM of probe), 1X TagMan Gene Expression Master
Mix, and 2 pl of template. For each sample, preamplified cDNAs were used as
a template after they were diluted by 100-fold (GDF9, BMP15, FGFS8, FGF10,
FGF16, and FGF17), 25-fold (PPARGCIA, NRF1, and MT-CO1), or 10-fold
(BCL2, BAX, ITM2B, POLG, POLG2, and TFAM). All gene-specific cDNAs
that were amplified for a particular sample were always run in duplicate in the
same real-time RT-PCR plate using an ABI PRISM SDS 7500 HT Real-Time
PCR System (Applied Biosystems). The following cycling conditions were
applied for amplification: initial denaturation at 95°C for 15 min, followed by
40 cycles consisting of 95°C for 15 sec and 60°C for 1 min. Probe fluorescence
was read at the end of each extension step (60°C). Standard curves were
generated for each gene-specific cDNA using four five-fold serial dilutions of
sample pools to evaluate amplification efficiency [43]. Because all of the assays
(except for BCL2 and FGF17) showed high amplification efficiency (roughly
100%), the target transcript amounts of each sample were linearized according
to Livak and Schmittgen [44] using the 2-AACt (normalized values) or 2~
(nonnormalized values) method, as described previously [43]. The linearized
average values of duplicate samples were used to evaluate the expression levels
of specific genes with respect to season and animal category. The PCR products
of each amplification assay were run on 2% agarose gels to assess the
specificity of the amplified fragment.

Statistical Analysis

The real-time RT-PCR data were tested for the normality of residuals and
for the homogeneity of variance. ANOVA was then performed using the
GLIMMIX procedure of SAS v. 9.3 (SAS/STAT; SAS Institute Inc., Cary, NC)
for a log-normal distribution [43]. The explanatory variables of animal
category, season, and the interaction between animal category and season were
considered for inclusion in the models. For each gene transcript, the expression
level is presented following normalization to the mean level of the same
transcript found in oocytes collected from heifers during winter on a natural log
(Ln) scale (because the log-normal distribution was considered). Due to the Ln
scale, a reduction in gene expression in a specific experimental group may
result in a negative value when the expression level is expressed relative to the
value obtained for oocytes collected from heifers during winter. Therefore, to
avoid generating negative values, the mean used for data normalization was
divided by ¢ [43], meaning that all data were compared against 5, which is the
relative mean expression level found for oocytes retrieved from heifers during
winter. The data are expressed in relation to oocytes collected from heifers
during winter, because this is the category and season in which the
physiological (lactation) and environmental (heat stress) influences on fertility
are smallest. Significance was considered at P < 0.05. Values are presented as
the mean = SEM.

RESULTS

Low Oocyte Competence of RBs During Summer Heat
Stress Is Related to Decreased mtDNA Copy Number in
Oocytes

Because mtDNA copy number has been reported as a
possible marker of oocyte viability, we sought to determine
whether the low competence of oocytes retrieved from RBs
during summer was associated with decreased mtDNA
amounts. Immature oocytes that were collected via OPU from
heifers, PL, and RBs [12] were used to measure mtDNA
amounts. In agreement with our hypothesis, we found that
oocytes retrieved from RBs during summer contained less
mtDNA compared to oocytes from heifers (P =0.01) or PLs (P
= 0.0008) during the same season (Fig. 1). Furthermore, the
mtDNA content was reduced by over eight-fold (P =0.0004) in
oocytes from RBs during summer in comparison with oocytes
retrieved from the animals of the same category during winter
(Fig. 1). Interestingly, the mtDNA content was negatively
correlated (r = 0.24; P = 0.04) with the respiration rate at the
time that the animals were subjected to OPU. However,
although the amount of mtDNA was positively correlated with
the total number of oocytes (= 0.24; P = 0.04) and number of
viable oocytes (r=0.25; P =0.03), no association between the
mtDNA amount and developmental rate was found (Supple-
mental Table S3), corroborating our previous findings [39]. In
summary, these data provide evidence of a reduced mtDNA
copy number in oocytes from RBs during summer.

Increased Expression of Genes Associated with
Mitochondrial Function Suggests a Compensatory
Response to the Low Amounts of mtDNA in Oocytes
Retrieved from RBs During Summer

To more deeply investigate the relationship between
mtDNA copy number and oocyte competence in RBs, we
evaluated the expression of genes associated with mitochon-
drial function (MT-CO1, NRF1, POLG, POLG2, PPARGCIA,
and TFAM). As previously explained, the expression of the
target genes was analyzed without normalization to reference
gene expression (Fig. 2) to provide more precise information
regarding the influence of heat stress and animal category on
gene expression. An increase of NRFI (P < 0.006), POLG (P
< 0.003), POLG2 (P < 0.002), PPARGCIA (P < 0.004), and
TFAM (P < 0.0006) expression was found in RB oocytes
collected during summer compared to oocytes collected from
heifers and PLs during the same season (Fig. 2). In addition,
the expression of these genes during summer was decreased
compared with that during winter in oocytes from heifers (P <
0.001) and PLs (P < 0.01), but not in oocytes from RBs (Fig.
2). In contrast, the expression of MT-CO1 in heifers (P = 0.04)
and RB (P = 0.0008) oocytes was greater than that in oocytes
collected from PLs, regardless of season (Fig. 2). These results
provide evidence of a potential compensatory response of
mitochondria-related genes to the lower levels of mtDNA
found in RB oocytes collected during summer. This compen-
satory effect is further supported by a negative correlation
(Supplemental Table S3) between the mtDNA amount and
expression of MT-COIl (r = —0.26; P = 0.02), NRFI (r =
—0.44; P < 0.0001), POLG (r =—0.51; P < 0.0001), POLG?2
(r=-0.47; P <0.0001), PPARGCIA (r=—0.44; P < 0.0001),
and TFAM (r = —0.45; P < 0.0001). Moreover, positive
correlations between the blastocyst rate and the expression of
NRFI (r =0.29; P =0.01) and POLG2 (r = 0.23; P = 0.04)
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Category: P =0.15 H
Season: P =0.12 PL
91 Category x Season: P = 0.008 RB

Relative mtDNA amount
(Ln scale)

Winter
Season

Summer

FIG. 1. Mitochondrial DNA content in Holstein cattle oocytes. Oocytes
were retrieved from heifers (H; n=17 and 15 oocytes, respectively), high-
producing cows in PL (n =16 and 18 oocytes, respectively), and RBs (n=
17 and 17 oocytes, respectively) during winter (W) and summer (S). The
amounts of mtDNA are expressed relative to the amount detected in
oocytes collected from heifers during winter. P values for animal category,
season, and animal category X season are denoted in the insets above
each graphic. The different letters over the bars denote significant
differences between the categories within a season (P < 0.05). *Difference
between seasons within a category (P < 0.05).

were identified, indicating that the expression of these genes
was associated with oocyte competence.

Increased ITM2B and BAX Expression Provides Evidence of
Apoptosis of Oocytes Collected from RBs During Summer

To further investigate whether the poor oocyte competence
that was identified in oocytes collected from RBs during
summer [12] was associated with altered expression of
apoptotic genes, we evaluated the expression of BAX, BCL2,
and ITM2B, as well as the BAX/BCL?2 ratio. Briefly, ITM2B has
been described as a proapoptotic regulator that possesses the
same BH3 domain that is present in BCL-2 gene family
members [46-51]. When the expression levels of BAX and
ITM2B were evaluated, both were increased in RB oocytes
retrieved during summer compared with heifer (P < 0.05) and
PL (P < 0.01; Supplemental Table S3) oocytes collected
during the same season. Furthermore, the expression of BAX
and ITM2B during summer was decreased compared with that
during winter in heifer (P < 0.05) and PL (P < 0.05) oocytes,
but not in RB oocytes. As for the mitochondrial genes, the
expression patterns of these apoptotic genes in RB oocytes
differed from those in oocytes collected from heifers and PLs;
these differences might be related to differences in oocyte
quality among the tested categories. Accurate analysis of BCL2
expression could not be performed, due to the absence of
detectable levels of BCL2 transcripts in many oocytes retrieved
during both summer (heifers = 14/15, PLs =6/18, and RBs =8/
17 [failed/total samples]) and winter (heifers = 12/17, PLs =
11/16, and RBs = 8/17). As a result, the effects of season and
animal category on the expression level of BCL2 and BAX/
BCL2 had to be evaluated separately (Fig. 3), but no effects
were found. In summary, the increased levels of BAX and
ITM2B in the oocytes collected from the RBs during summer
provide evidence of apoptosis. The increased levels of these
transcripts might be a consequence of the lower amounts of
mtDNA found in the RB oocytes that were retrieved during
summer, as the expression of both BAX (r=—0.39; P =0.0006)

and ITM2B (r=—0.46; P < 0.0001) were negatively correlated
with the mtDNA amount (Supplemental Table S3). A positive
correlation (Supplemental Table S3) of BAX (P < 0.0001),
BCL2 (P < 0.001), and ITM2B (P < 0.0001) expression with
MT-COI (r =0.82, 0.47, and 0.83, respectively), NRFI (r =
0.76,0.71, and 0.84), POLG (r =0.88, 0.66, and 0.96), POLG2
(r = 0.85, 0.61, and 0.93), PPARGCIA (r = 0.86, 0.64, and
0.94), and TFAM (r=0.71, 0.49, and 0.79) expression suggests
that these genes were coregulated.

Altered Expression of GDF9 and FGF16 Suggests that These
Genes Play Roles in the Low Developmental Competence
of Oocytes Retrieved from RBs During Summer

Finally, we evaluated the expression of GDF9, BMPI5,
FGF8, FGFI10, FGFI16, and FGFI17 (Fig. 4) to investigate
whether the poor oocyte competence identified in oocytes
collected from RBs during summer [12] was associated with
altered expression of genes related to oocyte maturation. These
genes encode local factors that are secreted by the oocyte and
that provide essential control over gamete maturation. The
amplification of FGFI17 failed in all samples, leading to its
exclusion from further analysis. The expression of BMP15 (P =
0.006) and FGF10 (P =0.004) was lower in oocytes collected
during summer compared with those collected during winter,
regardless of the animal category. Furthermore, the expression
of FGF16 (Fig. 4) in oocytes collected from RBs during winter
was decreased compared with that in oocytes collected from
heifers (P = 0.01) and PLs (P = 0.03) during the same season.
In heifer (P < 0.0001) and PLs (P = 0.0003), FGFI6
expression was also lower in oocytes collected during summer
compared with those collected during winter. However, the
expression of GDF9 in oocytes collected from RBs during
summer was greater than that in oocytes collected from heifers
(P =0.04) and PLs (P =0.01) during the same season (Fig. 4).
In heifers (P < 0.0001) and PLs (P < 0.0001), GDF9
expression was also lower in oocytes collected during summer
compared with those collected during winter. Altogether, these
data provide evidence that GDF9 and FGF16 were differen-
tially expressed in RB oocytes during summer and winter,
suggesting that these genes may play roles in the low
developmental competence of RB oocytes. This hypothesis is
further supported by the finding that the expression of GDF9
(P < 0.05) and FGF16 (P < 0.05) were positively correlated
(Supplemental Table S3) with the total number of oocytes (r =
0.27 and 0.24, respectively), the number of viable oocytes (r =
0.27 and 0.23), and the blastocyst rate (r = 0.24 and 0.21).
Overall, the expression of individual genes was positively
correlated with the expression of the other genes that were
evaluated, whereas the expression of most of the evaluated
genes was negatively correlated with the content of mtDNA in
oocytes (Supplemental Table S3).

DISCUSSION

The results presented here strongly support the hypothesis
that altered gene expression and reduced mtDNA copy number
in oocytes are linked to decreased competence of oocytes
collected from RBs during summer. The importance of mtDNA
copy number in fertility has been extensively studied, because
mtDNA replication is reported to be downregulated during the
preimplantation period [52-58]. Previous studies have provid-
ed strong evidence of a link between mtDNA copy number and
fertility in several species [34, 36-38], including cattle [40—42].
Indeed, studies have indicated that mitochondria play an
important role in development [32, 59, 60]; however, it remains
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FIG. 3. Expression of apoptotic genes without normalization to reference gene expression. Oocytes were retrieved from heifers (H; n =17 and 15

oocytes, respectively), high-producing cows in PL (n =16 and 18 oocytes, respectively), and RBs (n=17 and 17 oocytes, respectively) during winter (W)
and summer (S). The amounts of BAX (A), BCL2 (B), BCL2 (C), and ITM2B (D) transcripts are expressed relative to the values obtained for oocytes collected
from heifers during winter. P values for animal category, season, and animal category X season are denoted in the insets above each graphic. The different
letters over the bars denote significant differences between categories within a season (P < 0.05). *Difference between seasons within a category (P <

0.05).

unclear whether the number of mtDNA copies that are present
in cow oocytes is related to their competence to develop to term
[61]. This relationship is clearer in some species, such as mice
and humans [33, 61]. Moreover, recent reports in humans
found an inverse correlation between mtDNA amount in
embryos and their developmental potential [62, 63]. Although
these findings are contradictory compared with those of
previous reports, it seems that the differences were determined
by the moment (e.g., oocyte vs. embryo) mtDNA amount was
measured [33, 61-63]. Thus, it is believed that, regardless of
the species, a minimum number of mtDNA copies in the oocyte
is necessary to support development after fertilization [61]. If
the number of mtDNA copies in oocytes is below this
threshold, the embryo seems to have to activate mtDNA
replication during preimplantation [39], explaining why less
mtDNA in embryos is better [62, 63]. Herein, the amount of
mtDNA in RB oocytes was decreased by over eight-fold during

summer compared with winter. Furthermore, blastocyst rate in
RBs dropped substantially from winter to summer (22.5 *
54% vs. 7.9 = 4.3%), whereas the percentage of TUNEL-
positive cells in blastocysts increased by more than two-fold
during summer (2.2 = 0.2% vs. 4.9 = 0.7%) [12]. Therefore,
these findings provide further evidence of a link between
mtDNA and oocyte viability in cattle, which may be associated
with the lower fertility of RBs during summer.

In addition to the above findings, RB oocytes also had an
increased amount of nuclear-encoded transcripts related to the
transcription and replication of mtDNA (e.g., NRFI, POLG,
POLG2, PPARG, and TFAM) [64]. Expression of these genes
was not altered in comparison with RB oocytes during winter,
but it was altered in relation to oocytes collected from heifers
and PLs during summer. Since the oocytes collected from
heifers and PLs presented better developmental rates [12], the
altered expression pattern may also be associated with the
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FIG. 4. Expression of maturation genes without normalization to reference gene expression. Oocytes were retrieved from heifers (H; n =17 and 15
oocytes, respectively), high-producing cows in PL (n =16 and 18 oocytes, respectively), and RBs (n=17 and 17 oocytes, respectively) during winter (W)
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graphic. The different letters over the bars denote significant differences between categories within a season (P < 0.05). *Difference between seasons
within a category (P < 0.05).
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poorer developmental competence of RB oocytes. In humans,
increased expression of mitochondrial-targeted genes encoded
by the nuclear DNA (nDNA) is a hallmark of mitochondrial
dysfunction seen in patients with mitochondrial diseases [65].
In the presence of mtDNA mutations or depletion, the nDNA
upregulates genes related to the mitochondrion in an attempt to
rescue its function [65]. This may be the case here, as the lower
content of mtDNA in RB oocytes might have triggered a
nuclear response toward a mitochondrial rescue. This hypoth-
esis is supported by the finding that the mtDNA content and
expression of these genes was inversely correlated. Although
such nuclear response may not have been sufficient to restore
the mtDNA content in the oocyte, it might have supported an
increase in the content of mtDNA in the developing embryo, as
described in humans [62, 63]. Furthermore, expression of MT-
COI, an mtDNA-encoded transcript, did not differ among
heifer, PL, and RB oocytes within summer, suggesting an
attempt to rescue mitochondrial function. Altogether, these
results demonstrate that gene expression in RB oocytes was
altered during summer, providing evidence of a possible
mitochondrial dysfunction in the oocytes of poorer develop-
mental competence. This is in agreement with the result that
oocytes that developed with better rates expressed greater
levels of NRFI and POLG2. Moreover, upregulation of
apoptotic genes (BAX and ITM2B) in RB oocytes, further
confirms their greater sensitivity to summer. As blastocysts
produced using RB oocytes presented higher rates of TUNEL-
positive cells [12], increased expression of BAX and ITM2B
might indicate that these oocytes were already more prone to
undergo apoptosis.

An overall downregulation of gene expression during
summer was also noticed in the oocytes from heifers and PLs
compared with winter. This is demonstrated by the lower
expression of genes associated with mitochondria (NRFI,
POLG, POLG2, PPARGCIA, and TFAM), apoptosis (BAX and
ITM2B) and oocyte maturation (FGFI6 and GDF9). In
addition, we showed previously that these oocytes downreg-
ulated HSP90AAI and several candidate housekeeping genes
(ACTB, GAPDH, GUSB, HISTIH2AG, PPIA, and RPLIS)
during summer [43]. These results provide further evidence of
the profound effect of summer on oocyte development on
expression of several genes (HSP90AAI, HSPAIAB, NRFI,
POLG2, GDF9, BMPI15, and FGF16), as indicated by the
positive correlation between transcript abundance and devel-
opment outcome into blastocysts. As previously suggested, this
may be a consequence of cumulative heat stress on mRNA
synthesis and storage during oocyte growth [22], perhaps as far
back as the secondary follicle stage [26]. Herein, cows were
exposed to heat stress during the entire summer period, and
oocytes were collected only at the end of the season. The
accumulation of maternal mRNA during the growth phase is
known to provide oocytes with developmental competence
[66], and perturbations during follicular development have
been shown to be capable of reducing oocyte quality [22]. For
instance, exposing oocytes at the germinal vesicle stage to heat
stress impaired maternal mRNA storage and/or the mechanism
of transcription renewal, which, in turn, affected gene
expression (e.g., MOS, GDF9, POUS5F1, and GAPDH) in the
developing embryo [22]. These previous reports may explain
the lower transcript levels found during summer for several
genes in the present study and the poorer development of
oocytes from heifers and PLs during summer [12]. Moreover,
as follicle development lasts ~60 days in cattle, such effect on
the oocyte may remain for long periods beyond the end of heat
stress [26]. In summary, these data support a remarkable effect

of summer on oocyte gene expression, which may impact on
oocyte developmental competence and fertility of dairy cows.

In conclusion, herein we provide evidence that RB oocytes
collected during summer present a possible mitochondrial
dysfunction (illustrated by reduced mtDNA content and
increased expression of mitochondrial genes) and are more
prone to undergo apoptosis, which might be associated with
their poorer developmental potential. In addition, an overall
downregulation of gene expression was seen in the oocytes
from heifers and PLs during summer, which corroborates the
poorer developmental rates during heat stress. These findings
are relevant to the management of Holstein cows in dairy
farms, as the association of summer heat stress and repeat
breeding causes significant economic losses through their
impact on cow fertility.
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